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Abstract. Despite significant advances in recent years, structure-from-
motion (SfM) pipelines suffer from two important drawbacks. Apart
from requiring significant computational power to solve the large-scale
computations involved, such pipelines sometimes fail to correctly recon-
struct when the accumulated error in incremental reconstruction is large
or when the number of 3D to 2D correspondences are insufficient. In
this paper we present a novel approach to mitigate the above-mentioned
drawbacks. Using an image match graph based on matching features we
partition the image data set into smaller sets or components which are
reconstructed independently. Following such reconstructions we utilise
the available epipolar relationships that connect images across compo-
nents to correctly align the individual reconstructions in a global frame of
reference. This results in both a significant speed up of at least one order
of magnitude and also mitigates the problems of reconstruction failures
with a marginal loss in accuracy. The effectiveness of our approach is
demonstrated on some large-scale real world data sets.

1 Introduction

In structure from motion (SfM) we typically use many images of a scene to solve
for both the 3D scene being viewed and the parameters of the cameras involved.
Most contemporary large-scale SfM methods [1–5] use the bundle adjustment
method [6] which simultaneously optimises for both structure and camera pa-
rameters using point correspondences in images by minimising a global cost
function. However, being a joint optimisation over all cameras and 3D points,
bundle adjustment often fails for large data sets. This is typically due to an accu-
mulation of error in an incremental reconstruction or when cameras are weakly
connected to 3D feature points. In addition, owing to the very large number
of variables involved, bundle adjustment is also very computationally demand-
ing and time consuming. In this paper we adopt a divide-and-conquer strategy
that is designed to mitigate these problems. In essence, our approach partitions
the full image data set into smaller sets that can each be independently re-
constructed using a standard approach to bundle adjustment. Subsequently, by
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utilising available geometric relationships between cameras across the individual
partitions, we solve a global registration problem that correctly and accurately
places each individual 3D reconstructed component into a single global frame of
reference.

In what follows we show that this approach is not only more robust with
respect to failures in reconstruction but also gives significant improvements over
the state-of-the-art techniques in terms of computational speed. The main con-
tributions of our paper are:

1. A principled method based on normalised cuts [7] to partition the match
graph of a large collection of images into disjoint connected components
which can be independently and reliably reconstructed. This process also
automatically identifies a set of connecting images between the components
which can be used to register the independent reconstructions. Specifically,
these are the image pairs specified by the cut edges in the graph.

2. A method for registering the point clouds corresponding to the indepen-
dent connected components using pairwise epipolar geometry relationships.
The epipolar based registration technique proposed in this paper is more ro-
bust than the standard techniques for registering point clouds using 3D-3D
or 3D-2D correspondences. Registration methods based on 3D point corre-
spondences do not use all available information (image correspondences) and
may fail when the point clouds do not have sufficient number of 3D points
in common. 3D-2D based methods, such as a sequential bundler [1, 2, 8], of-
ten result in broken reconstructions when the number of points available are
inadequate for re-sectioning or when common 3D points are removed at the
outlier rejection stage [1] (see Table 4). The proposed registration algorithm
using pairwise epipolar geometry alleviates this problem as is shown in Fig-
ure 1 and discussed in Section 4. Considered as an independent approach,
the epipolar based algorithm can also be used to register independently re-
constructed point clouds by introducing a few connecting images.

Matching all pairs of images in an iterative bundler is computationally ex-
pensive, especially when the number of images in the collection is large. There
have been several attempts to reduce the number of images to be matched.
Frahm et al. [9, 10] try to find some representative “iconic images” from the im-
age data set and then partition the iconic scene graph, reconstruct each cluster
and register them using 3D similarity transformations. Snavely et al. [11, 12] and
Havlena et al. [13] compute skeletal sets from the match graph to reduce image
matching. All these methods reduce the set of images on which they run SfM.
Moreover, incremental bundle adjustment is also known to suffer from drift due
to accumulation of errors which increase as the number of images increase [5,
14, 1]. Crandall et al. [5, 14] propose an MRF based discrete formulation coupled
with continuous Levenberg-Marquadt refinement for large-scale SfM to mitigate
this problem. To reduce the matching time, Wu [1] (henceforth VSFM) proposed
preemptive matching to reduce the number of pairs to be matched. Moreover, all
cameras and 3D points are optimised only after a certain number of new cameras
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(a) Reconstruction failure by VSFM [1]. (b) Successful reconstruction by our
method.

Fig. 1: Plan view of reconstruction of two temples at the Hampi site in India : (a)
illustrates the failure of VSFM [1] due to inadequate points during re-sectioning
(marked in red) whereas (b) our approach correctly solves the reconstruction
problem. Please view this figure in color.

are incorporated into the iterative bundler. Although VSFM demonstrates ap-
proximately linear running time, sometimes it fails for large data sets when the
accumulated errors of iterative bundler become large [1]. Although there have
been some recent global methods [15, 16], to be able to solve large-scale SfM
problems, global methods need to be exceedingly robust. Farenzena et al. [17]
also propose to merge smaller reconstructions in a bottom up dendrogram. How-
ever, their largest datasets are of only 380 images and their use of reprojection
errors of common 3D points for merging is unsuitable for very large datasets. In
our approach, we propose to decompose the image set into smaller components
so that the match graph of each component is densely connected. This is likely
to yield correct 3D reconstructions, since fewer problems are encountered during
the re-sectioning stage of a standard iterative bundler and the reconstruction
is robust. Restricting pairwise image matching to within each component also
yields a significant reduction in computation time. Moreover SfM based recon-
struction of each component can be carried out in parallel. Our approach is
conceptually depicted in Figure 2.

The rest of the paper is organised as follows. Section 2 discusses our method
of decomposing the image set into smaller groups and also determining the con-
necting images between individual groups. Section 3 provides the overview of our
registration process. Section 4 reports the results of our experiments on different
data sets, and Section 5 concludes the paper.

2 Data set decomposition using normalised cuts

Images used for bundle adjustment can either be acquired from a site or ag-
gregated from various sources on the internet. When the images are acquired
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Fig. 2: (a) Original match graph where images (nodes) are connected by edges
having similar image features. The edge weights represent similarity scores. (b)
Normalised cut partitions the full image set into connected components which
can be reconstructed independently. The “connecting images” across components
are defined by the cut edges. (c) The individual cuts are now equivalent to
individual nodes that represent independent rigid 3D reconstructions which are
registered using pairwise epipolar relationship of the connecting images.

from a site in an organised manner, the problem of decomposition into smaller
sets becomes trivial. In what follows we provide an illustration. Figure 3 shows
the Google Earth view of the Vitthala temple at Hampi in Karnataka, India,
which is a world heritage site maintained by the Archaeological Survey of India
(Latitude: 15.342276, Longitude: 76.475287). Figure 4 shows a typical example
where images of two buildings are captured separately and it also shows a typical
connecting image which sees parts of both the buildings. We call such data sets
organised.

Fig. 3: Google Earth view of the Vitthala temple, Hampi, Karnataka, India. The
red boxes denote different buildings of the temple. Images for each building were
captured separately.
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(a) (b) (c)

Fig. 4: (a) and (b) Two buildings of the Hampi temple complex, and (c) a typical
connecting image.

In case such planned acquisition is not possible, the collection of images need
to be automatically partitioned into smaller components. Unorganised data sets
downloaded from the Internet are typical examples. In such cases a method for
automatically grouping into visually similar sets and finding connecting images
needs to be established. To this end, we train a vocabulary tree [18] using all
image features (SIFTGPU [19]) and extract top p (typically p = 80) similar
images for each image in the set. We form a match graph where each node is an
image and the edge weights between two nodes are the similarity values obtained
from the vocabulary tree. We aim to partition the set of images such that each
partition is densely connected. The partitions only capture dense connectivity of
matched image features and need not represent a single physical structure. Here
the dense connectivity ensures that SFM reconstruction is less likely to fail due
to the paucity of reliable matches or accumulated error or drift.

We use the multi-way extension [7] of the normalised cut (NC) formulation
to automatically partition the match graph G = (V,E) into individual clusters.
Since, in our case edge weights are based on visual similarity, the normalised
cut would yield those connected components in which connected images are vis-
ibly similar. We use the images that belong to the cut as candidate connecting
images. In Figure 5 we show the result of our estimation upon applying the
normalised cut to the set of images collected at the Hampi site illustrated in
Figure 3, i.e. when we treat the images as an unorganised dataset. Figure 5a
shows the cameras partitioned into connected components in different colours.
Figure 5b shows the plan view of the 3D reconstructions obtained for each com-
ponent marked in corresponding colours. It should be noted that in this example,
the graph weights are based only on pairwise image feature similarity scores. We
can improve the quality of the graph by incorporating geometric information
such as the robustness of computation of pairwise epipolar geometries of con-
nected images. Such a scheme would not only ensure that the connected pairs of
images can be reliably matched but would also ensure that the pairwise epipolar
geometries can be robustly estimated. The corresponding result is provided in
Figure 8b and discussed in Section 4.
Extracting connecting images: The number of candidate connecting images
are often very large. Reducing the number of connecting images will reduce
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(a) Cameras partitioned into connected
components. Each component is shown
in a different colour.

(b) 3D reconstructions of each compo-
nent marked in same colours.

Fig. 5: SfM results on the Hampi dataset (unorganised data) illustrating the
effect of graph partitioning.

the time for estimation of pairwise epipolar geometry. The connecting image
extraction process is described below:

1. For each of the connecting images reject the outlier out edges (both within
and across components) using a measure of the robustness of the epipolar
computation (Equation 6).

2. If the number of out edges retained is less than T (typically T = 60% of
the original out degree) then remove the image from the set of connecting
images.

3. Compute the mean of the similarity scores of all the retained out edges for
the current image.

4. If the similarity score for a cut edge exceeds the mean similarity values of
the images they connect, then mark the images as connecting images.

3 Registration of independent component reconstructions

In this Section, we describe how each of the individually reconstructed groups of
cameras are aligned or registered to a single frame of reference. To register a pair
of 3D reconstructions, we need to estimate the relative transformation between
them. In what follows, we describe how we estimate relative rotation, translation
and scale between a pair of reconstructions using epipolar relationships between
the reconstructed cameras and the connecting cameras. While estimating epipo-
lar geometry, we use focal lengths extracted from the EXIF information of the
images.

Let us consider two independently reconstructed groups of cameras A and
B3. Let CAB be the set of connecting cameras between A and B. We first fix

3 In this section, we use lower case letters to denote individual cameras and upper
case letters to denote groups of reconstructed cameras.
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the relative scale between A and B using the approach described in Section 3.1.
Once this relative scale is fixed, the two reconstructions A and B are now related
by a rigid or Euclidean transformation which can be estimated using the method
detailed in Section 3.2.

3.1 Relative scale estimation between a pair of reconstructions

To estimate the relative scale between A and B, we first estimate the position
of all the connecting cameras (k ∈ CAB) in the local frames of reference of
both A and B separately. Then we compare the pairwise distances of common
cameras in the two reconstructions. If a connecting camera k ∈ CAB shares
common features with the cameras in A then, the rotation and translation of k
can be found in the local reference frame of A. Let the unknown rotation and
translation of k, with respect to the frame of reference of A be denoted by RAk

and TAk respectively. Now, consider a camera i that belongs to the group A.
Suppose, the rotation and translation of i with respect to the local frame of
reference of A is RAi and TAi respectively (as estimated within A). If i ∈ A and
k ∈ CAB share common features, then using epipolar relationships, we can find
the relative rotation (Rik) and the direction of relative translation (tik) between
i and k. Clearly the following relations should hold:

Rik = RAkR
T
Ai ⇒ RAk = RikRAi (1)

tik ∝ TAk −RikTAi ⇒ [tik]× (TAk −RikTAi) = 0 (2)

where, [.]× is the skew-symmetric matrix representation for vector cross product
[20]. These relations hold for all i ∈ A such that i and k share common features
and the epipolar geometry between them can be estimated. Therefore, we take
the geodesic mean [21] of all such estimates of the rotation RAk as,

R̂Ak = mean
i∈A

(RikRAi) (3)

Similarly, the average estimate of the translation TAk is obtained as

T̂Ak = argmin
TAk

∑
i∈A

∣∣∣∣[tik]× (TAk −RikTAi)
∣∣∣∣2

||TAk −RikTAi||2
(4)

which can be solved using the iterative method proposed in [22].

The center of projection of camera k, in the frame of reference of A, is
given by −R̂AkT̂Ak. Thus, we compute the camera centers (−R̂AkT̂Ak) for all
k ∈ CAB in the frame of reference of A. Similarly, we compute the camera
centers (−R̂BkT̂Bk) for all k ∈ CAB in the frame of reference of B. Then, the
relative scale between A and B can be robustly estimated by comparing pairwise
distances of common cameras in the two reconstructions as:

ŝAB = median
k1,k2∈CAB

∣∣∣∣∣∣−R̂Bk1
T̂Bk1

+ R̂Bk2
T̂Bk2

∣∣∣∣∣∣∣∣∣∣∣∣−R̂Ak1 T̂Ak1
+ R̂Ak2

T̂Ak2

∣∣∣∣∣∣ (5)
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Once the relative scale between A and B is estimated, we scale the recon-
struction of A to have the same scale as that of B. Therefore, the rotation of
camera k in the frame of reference of A remains R̂Ak whereas, the translation
of camera k becomes ŝABT̂Ak in the scaled local frame of reference of A. We do
not change the scale of B. Hence the rotation ( R̂Ak) and the translation ( T̂Ak)
of camera k in the frame of reference of B remains unaltered.

It should be noted here that the translation directions estimated using epipo-
lar geometry may have outliers. To remove outliers, we check whether the two
non-zero eigenvalues of the essential matrix have similar values [20]. We discard
the estimated essential matrix as well as the corresponding translation direction
if the ratio of the two largest eigenvalues (σ2 and σ1 in sorted order) is less than
a threshold, i.e.

σ2
σ1

< T (6)

Typically we take T as 0.95 for our experiments.

3.2 Relative rotation and translation estimation between a pair of
reconstructions

Once A is resized to have same scale as that of B, the two reconstructions are
related by a rigid or Euclidean transformation. Earlier, we estimated the motion
of k in the frame of reference of A to be a rotation and translation of R̂Ak and
ŝABT̂Ak respectively. Similarly, the motion of k in the frame of reference of B is
R̂Bk and T̂Bk respectively.

In the following we denote the 3D rotation and translation compactly as the
Euclidean motion model

M =

[
R T
0 1

]
(7)

where 0 denotes a 1× 3 vector of zeros. Suppose the unknown motions that
align A and B to the global frame of reference be MA and MB respectively. After
applying these transformations to A and B, all common connecting cameras (k ∈
CAB) between A and B should have the same motion parameters. Therefore,
after A and B are registered with the global frame of reference, we have

M̂AkMA = M̂BkMB (8)

where we reiterate that the translation component of M̂Ak is the scaled
version, i.e. ŝABT̂Ak. Therefore, the relative motion between A and B is

MAB = MBM
−1
A = M̂−1BkM̂Ak (9)

From Equation 9 we can see that we have

RAB = RBR
T
A = R̂T

BkR̂Ak (10)
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If there are many connecting cameras between A and B, then we have many
estimates of RAB , which we average to provide the estimate :

R̂AB = mean
k∈CAB

(
R̂T

BkR̂Ak

)
(11)

Similarly, from Equation 9, the relative translation between A and B can be
seen to be given by:

TAB = TB −RBR
T
ATA = ŝABR̂

T
BkT̂Ak − R̂T

BkT̂Bk (12)

Therefore, we estimate relative translation between A and B by robustly aver-
aging all pairwise estimates from different connecting cameras as:

T̂AB = argmin
T

∑
k∈CAB

∣∣∣∣∣∣T − (ŝABR̂
T
BkT̂Ak − R̂T

BkT̂Bk

)∣∣∣∣∣∣
1

(13)

In our implementation, we start the process of global registration using the
largest reconstruction (with maximum number of images) as the seed and register
all other reconstructions which are connected to this seed and merge them into
a single model. We also remark that the motion models required for registering
individual reconstructions connected to the current model can be estimated in
parallel.

4 Experimental Results

We present our results on both organised and unorganised image data sets.
For our experiments, we used an Intel i7 quad core machine with 16GB RAM
and GTX 580 graphics card. We first present our result on an organised image
set acquired from Hampi (see Figure 3) . The data set consists of 2337 images
covering 4 temple buildings. The physical footprint of these 4 buildings covers
an area of approximately 160 × 94 metres.4 For reconstructing the images in
each individual set we use VSFM [1] as the iterative bundler. We merge each
of these reconstructions using the method described in Section 3 into a com-
mon frame of reference. Figure 6a shows our reconstruction after registration
superimposed on a view from Google Earth. As we do not have ground truth
for such real-world data, to analyse the quality of our reconstruction we use the
output of VSFM applied on the entire data set using all pairs matching as our
baseline reconstruction. We note that all pairs matching is necessitated here as
the scheme of preemptive matching suggested in [1] fails on this data set. Figure

4 We point out here that these buildings are far more complex compared to urban
buildings and even heritage sites such as the Notre Dame cathedral reconstructed in
[4]. Specifically, these temples have fluted pillars, are repleted with ornate carvings
and sculptures, repeated patterns as well as layered cupola. The complexity of these
structures can also be judged from the building footprint as seen in the plan view
presented in Figure 6a.
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6b shows the comparison where the red point cloud is obtained from VSFM and
the green points are obtained using our method. VSFM took 5760 minutes to
reconstruct the data set using all pairs matching. In contrast our method takes
2578 minutes (using all pairs matching) to reconstruct the same data set. The
computation time of our method is calculated by considering the time required
for reconstruction of the largest component and the total time for registration,
since the reconstruction of each component is done in parallel. We also compare
the 3D camera rotations and positions (i.e. translations) obtained by our method
against the ‘ground truth’ provided by VSFM. As the two camera estimates are
in different frames of reference and may also differ in scale, we align them in a
common Euclidean reference frame by computing the best similarity (Euclidean
transformation and a global scale) transformation between them. The results of
our comparison are presented in Table 1. Here, while the rotation error is in
absolute degrees, since the overall scale of the reconstruction is arbitrary, we
present the errors in translation (position) estimates as a fraction of the graph
diameter of the full reconstruction. As can be seen, apart from being much faster
than VSFM, our result is qualitatively similar to that obtained by VSFM.

(a) Reconstruction overlaid on Google
map.

(b) Comparison between VSFM (red)
and our method (green).

Fig. 6: Validation of reconstruction of Hampi data set (organised data).

Table 1: Comparison of total reconstruction by VSFM against individual recon-
structions being registered by our method

Error entity Error unit Mean error Median error RMS error

Camera rotation Degrees 1.93 1.57 2.66
Camera translation Ratio of graph diameter 0.012 0.0091 0.041

For experimenting with unorganised image datasets we consider a total of
3017 images from the Hampi data set. We train a vocabulary tree [18] using
SIFT [23, 19] features and take 80 most similar images from vocabulary tree for
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Table 2: Data sets used in our experiments

Data set No. of No. of No. of
images components images

reconstructed

Rome 13783 24 10534
Hampi 3017 7 2584
St Peter’s Basilica 1275 5 1236
Colosseum 1164 3 1032

each image in the set to construct a match graph. Normalised cut is applied on
this match graph and connected components are obtained. In our experiments,
the expected number of connected components is decided intuitively and is used
as an input parameter for the number of components needed using normalised
cut. We use the process described in Section 2 to find the connecting images.
We then run VSFM on individual connected components and merge them into
a single coordinate frame. Figure 7 shows a frontal view of the reconstruction
by our method. Figure 5b shows the 3D reconstructions corresponding to each
of the connected components registered and in different colors. To validate our
result, we overlay our reconstruction on the corresponding site map from Google
Earth and Figure 8c shows that the registration is accurate. We also run VSFM
with all 3017 images and compare the results. Figure 8a shows the comparison
results where the VSFM output is marked in red and the output obtained using
our method is marked in green. Figure 8b shows the corresponding results using
a measure of robustness of epipolar estimation as edge weights in normalised
cut. It can be noted that the results are marginally superior to that of Figure 8a
especially near the top left corner of the plan view. This is because the images
corresponding to this region are no longer distributed across different segments
by normalised cut.

Table 3: Time statistics of our method on different data sets compared with
VSFM

Data set Match graph Pairwise Reconstruction Total time Pairwise Reconstruction Total
creation using matching and by us matching by VSFM time
vocabulary tree (mins) registration (mins) by VSFM (mins) by VSFM
(mins) (mins) (mins) (mins)

Rome 768 502 27 1297 N/A N/A N/A
Hampi 481 424 8 913 9522 59 9581
St Peter’s Basilica 98 22 4 124 1385 10 1395
Colosseum 83 24 3 110 1394 9 1403

We also tested our algorithm on some standard unorganised data sets down-
loaded from the Internet. We downloaded approximately 13K images of Central
Rome from Flickr and tested our algorithm on this data set. Figure 9 shows
the reconstruction using our method. This data set could not be reconstructed
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using VSFM with our hardware resources. Figure 9d shows the reconstruction
overlaid on Google map. We also ran our algorithm on the St Peter’s Basilica
and Colosseum data sets obtained from [1], the results of which are shown in
Figures 10 and 11 respectively. Table 2 shows the total number of connected
components and the total number of images reconstructed for each of the data
sets. The time statistics of our algorithm for different data sets are presented
in Table 3. For most of the cases we had to use all pairs matching in VSFM
as preemptive matching was causing the reconstruction to break in the middle,
which is also reported in [1]. In our case we used the initial match graph ob-
tained from vocabulary tree. It is evident that most of the time is consumed
for matching. The reconstruction and the total registration time taken by our
approach is significantly less than the reconstruction time of VSFM. The over-
all speed up achieved is at least one order of magnitude superior. We also note
that iterative bundle adjustment schemes often results in broken reconstruction
even within a component. In Table 4 we present statistics of such breaks. In all
such cases we have been able to register the broken components using pairwise
epipolar geometry on the connecting images in the broken components identified
automatically from the match graph. Finally, we also remark in passing that we
also experimented with the method presented in [17] using the author’s code.
On the Hampi dataset, [17] failed to reconstruct in more than 24 hours. While
[17] is faster than original BA, its runtime complexity is far inferior to the O(n)
complexity of VSFM. In an additional test, for a 300 image subset of the Hampi
dataset, [17] was 10 times slower than VSFM and produced a significantly poorer
result.

Fig. 7: Frontal view of the Hampi reconstruction (considered as unorganised
data).

5 Conclusion

We have presented a new pipeline for automatic 3D reconstruction from a large
collection of images. We have demonstrated the utility of partitioning the im-
ages into clusters that can be independently and reliably reconstructed and then
aligned in a global frame of reference. Results on a number of large data sets
demonstrates that our method results in large speed improvements compared to
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(a) Comparison with VSFM
(red) and our method (green).

(b) Comparison with VSFM
(red) and our method with
epipolar robustness (green).

(c) Overlaid on Google map.

Fig. 8: Reconstruction of the Hampi data set (considered as unorganised data)
validated against VSFM reconstruction and Google Earth.

(a) Top view (b) View from inside

(c) Colored components (d) Overlaid on Google map

Fig. 9: Reconstruction of Central Rome using our method.

Table 4: Statistics of breaks in reconstruction of the data sets

Data set No. of No. of Total no. of
components components broken components including

by VSFM broken sub-components

Rome 24 5 33
Hampi 7 2 9
St Peter’s Basilca 5 1 6
Colosseum 3 2 6
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(a) Top view (b) View from inside (c) Colored components

Fig. 10: Reconstruction of St Peter’s Basilica using our method (1275 images
used).

(a) Top view (b) Side view (c) Colored compo-
nents

Fig. 11: Reconstruction of Colosseum using our method.

the state-of-the-art without any significant loss of accuracy.
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